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Abstract. The zero-temperature helicity modulus tensor of the frustrated XY-*
model is calculated by analysing the spectrum of the Hessian matrix for the flux-
density wave state near the centre of the Brillouin zone for the lowest band. The
eigenproblem jor the Hessian is formulaied in terms of iransfer mairices. Expressions
for the derivatives of the lowest band with respect to the wavevector are found in
terms of matrix traces which are then evaluated.

1. Introduction

The frustrated X'¥-model [1] is used to describe the statistical mechanics of Josephson
Jjunction arrays and granular superconductors. In the absence of disorder the model
consists of a regular square lattice of superconducting grains embedded in a normal
matrix. Each grain has an associated angular variable, #;, which is the phase of the
superconducting order parameter or gap function. The intergrain coupling between
phases is described by the effective free energy

H==J(T) cos(¢;;) (1.1)
(.}

where ¢, ; = §; — 8, — A, ;, the twist factors are given by

i

A(r) Is the vector potential of an applied magnetic field and ®; is the appropriate
flux quantum. The sum of the twists around a plaquette, ¢, is given by

Y. Ay =2nf,

{i,j}eda

where f_is the flux threading the plaquette in units of the flux quantum. In the
following we will assume that the flux 1s the same on each plaquette of the lattice.
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Halsey [3] has proposed a state which is 2 minimum of the effective Hamiltonian
(1.1) as the ground state of the model for § < f < %. The form of this state is a
flux-density wave. In a companion paper to this {2] the fluctuation modes around this
ground state are discussed. Here I will calculate the helicity modulus tensor which
describes the susceptibility of the state to very long wavelength twist deformations of
the phase ordering. This quantity is related to the experimentally accessible complex
impedance Z(w) of the network in coupled inductor experiments [4]. The kinetic
inductance is given by

Im{Z, ,(w)]

IR2 ~£i_r_r(1) w"_- (1.2)

L

This is related to the helicity modulus by

b= (L) 09, (19)

«where I'" ! is the matrix inverse of the helicity modulus tensor.
Fluctuations around the ground state are described by the normal modes of the
Hessian or stability matrix :

8*H
M. yiar g = (m)g- (1.4)

If f = p/q then this matrix is periodic and Bloch’s theorem can be used to reduce it
to a g x ¢ matrix, the eigenvectors of the full matrix being

— otby(z—y) ik (z+ v)
e L y)cj(:_i_y

where C is the eigenvector of the reduced Hessian satisfying C,,, = C, and (ky. k)
takes values in the anisotropic Brillouin zone —r/2 < k” <7/2, -m/2g <k < 7/2qg.
The reduced eigenvalue equation has the form

(A; + A0 — 22" A,C;_ | — 24,4, Ciyy = AC (1.5)

where z = cos(k)|), z = e+ and the A;s are a set of ¢ characteristic energies for the
ground state (see [2] for details). The values of the A;s only depend on ¢, different
values of p permute the subscripts i.

2. Transfer matrix formulation of the eigenvalue problem

The eigenvalue equation (1.5) can be rewritten in matrix form as follows

[Cip] _ [A,+ A n—38 —x2 A [ G 1
| G ] 7 zzdi | 224 0 | {Cit]

——
o

Let

T,(A2,2) = ' (2.2)
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and define
q
Q(A;z,2) = HT:‘(A; z,2) (2.3)
i=1 .

where the product sign implies ordering the lowest indexed matrix to the right. Clearly

[Cgl] - —(é)—qQ(A;z,z) [g;] = [g;] (2.4)

4

where £ = J]1_, A;. The matrix U = Q/£(z2)? must have a unit eigenvalue and
therefore satisfy

1 -TrU+ DetU = 0. (2.5)
Now Tr U = TrQ/&(zz)?, Det U = Det Q/£%(22)*? and

q
Det Q = [T Det T,

i=1
g
=z HAITA&H
i=l
_ 22(152 (26)
so the eigenvalue condition (2.5) can be rewritten as
S(Az,y) =Tr QA 2, 2) = 26ty (2.7)

where y = -;-(zq +(2*)7) = cos(qk, ). Equation (2.7) will be used as the fundarentat
condition that A be an eigenvalue of the reduced Hessian. In the next section it will
be shown that S(A;x,y) is independent of the variable y.

3. Proof that S{A) is independent of ¥

The transfer matrix T can be decomposed as follows

Ti(Asz,z) = A (A)g + xhy(2) (3.1)

C(8) we-(l, )

and A;(A) = A; + A, — 1A,

It will be conventent to introduce the following notation. Consider a word con-
sisting of an ordered string of ¢ characters chosen from {g, h}. Each word represents
the trace of the product of the corresponding terms in the decomposition (3.1}. For
example for ¢ = 2 there would be the four words

[99] = A1 2, Te(g?) [gh] = zA,Tr(gh,)
[hg] = 2}, Tr(h,g) [hh] = 2*Tr(hyh, ). ' (3.3)

where



692 K A Benedict

Clearly S(A; z,y) is given by the sum of all possible words.

Since h; is purely off-diagonal and g is diagonal it follows that any product of an
odd number of hs will be off-diagonal and therefore traceless, consequently any word
with an odd number of hs will not contribute to 5. This immediately implies that
S{A;z,y) is an even function of z.

Consider now a word in which the substring ghg appears. This corresponds to

1 0] 0 —z4]f1 0
ety o, M 6] @0

hence any word with isolated hs does not contribute either.

Now we consider partitioning a given word, which does not vanish for either of the
above reasons, such that each partition contains an even number of hs, no partition
can itself be decomposed into allowed partitions and no division falls between two
gs. For example {gg|hhiggg|hh|hgh|hhlhggggh|hh|hh] is correctly partitioned. This
partitioning is unique. If we consider the matrix product consisting of the subword
within one partition there are three possible cases. If the subword contains no hs
then the matrix product is obviously independent of z. If the subword is hh then the
product is

2 0 —Z*Ai 0 _Z*A‘i—l _ a2 ""A? 0
z [zA,.+1 o [lza, 0 |TF| 0 -A_ A, (3.5)

which is independent of z. Finally if the subword is a string of gs with an hk at either
end then, using the idempotence of g and ignoring the A factors, we get

[0 —z*A,.H1 OH 0 —z*Aj]:[o 0 ] (3.6)
Ay O 0 0f|z4;,, O 0 —Aj4

which is independent of z.

Hence we conclude that S(A, z,y) depends only on A and on 27, not on z, y or any
other function of k. Since Q is independent of z we can choose to construct it from
T matrices evaluated at any convenient value of z, subject to the constraint [z| = 1;
the most sensible choice is z = 1 so that the eigenvalue condition can now be written
as

S(A,z) = 2%z (3.7)
where S(A,z) = Tr [T, T:(A, z, 1).

4. Local analysis near the zone centre

Close to the centre of the Brillouin zone we can approximate the lowest band by

ak [Tl R

I

SO (k) = w00} + (kﬂm) + Lk, Tk, +O(k°) (4.1)
k=0

where

9w (k)
=| ———=~ . 4.2
Ty ( ok 0k, o (4.2)
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From the invariance of the Hamiltonian under global phase rotation and the fact that
the state is a minimum of the Hamiltonian (and that the Hessian is therefore non-
negative) we know that w{®)(0) = 0. The first-order terms vanish at the zone centre

by reason of symmetry (only even functions of k appear in the eigenvalue equations).
The second-order terms can be written in the form

8% 0 (k) _ ALz, 1)
akﬁ - dx =1
k=0 r=
Bzw(o)(k)) (6A<°)(1 y))
el S = _Jg? | —L 4.3
( aki k=0 g ay y=1 ( )

(aﬁw((’)(k)) 0
Bk )

By taking derivatives of equation (3.7) it can be shown (appendix 1) that

_(5,(0,1) — 264 _ (=%

n=s(36359)  n=7(500) 49
where

S.(Az) = 55(8’;“’) 5,41\,;.;):%. (4.5)

The modes corresponding to the lowest band near the zone centre are long-wavelength
uniform rotations of the phase angles 8, hence the coellicients I’ , charactenze the
energy cost of externally applying such phase rotations to the system. These are
usually referred to as the helicity moduli of the system (at finite temperature it is the
free energy cost which enters the definition) [4].

5. Calculation of the derivatives of §
In this section we will evaluate the two derivatives 5,(0,1) and S_(0,1).

5.1. Calculation of 5,(0,1)
Differentiation of (3.7) with respect to A gives

1 =
(U 1)—-—2TI'{ 92g+th:+lgt: 11+gtq 11} (51)
i=2

where
k
tk,] ’: HTt(O! 1) 1) (52)
i=j

and

(Te) =-sm=3[s 3] 69
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It can be shown (appendix 2) that

= (HA) { T T+ +Ak+11k;+zw} (5.4)

where [ ;, 1, ; and w are defined in (A2.2). Evaluation of (5.1.1) using the trace
formulee (A3.1) yields

Sa(0,1) = —3&¢L_(9) (5.5)

where

1
=y = (5.6)
i=1 *
which is a function of ¢ only since it is a sum over all subscripts.

5.2, Calculation of 5,(0,1)
Differentiation of (3.7) with respect to  gives

g-1

5.(0,1) = Tregohy +Tr b . bt )+ Tehyt, ) (5.7)
i=2
where
aT.(0;x,1) 0 —A, '
L= [l = il 5.8
h ( Oz )1::1 [Am 0 ] (58)
Again employing the result of appendix 2 gives, with the use of (A3.2),
5.0,1) =26 (g — Ly (¢)L_(9)) (5.9)
where
i
=Y A (5.10)
=1

6. The helicity moduli

Using the results of the previous section gives the following for the two non-zero
components of the helicity modulus tensor

RO . g
q LT L (g)

F”." = (6.1)

L, have the form

L,= 1+2lé‘:(q b2 cos(i/r/q) g odd (6.2a)
2310 cos(ifmfg+ 7/2¢g)  qeven
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and

(g~1)/2 :
L= {14255 sein/e) g odd o
23 L seclin/q + 7/2q) g even.

For all g, L, has the form

{ 2sin(7/2q) \

L.{g)= (6.4)
+ \l - cos(‘.'r/q)} M
hence
i 2
Typ = 8J sin(w/2q) _ (6.5)
T (1 - cos(m/q))
In the asymptotic limit, ¢ — oo, we can write
2q 2q 4q
L+N7r L‘Nwln(fr (6.6)
vielding for the helicity moduli
8J 2wt
I'")” ~ ? F_L,.L lad h’l(q) . (67)

7. Discussion

The non-vanishing components of the helicity modulus tensor have been calculated
for the frustrated X Y-model in the ‘Hux-density wave’ states which are believed to be
the ground states for some rational values of the flux parameter f = p/q in the range
% < f < . Explicit expressions have been given in terms of sums of the bond energies
which characterize the state. In addition asymptotic forms, valid for large ¢ have been
given. The relevance of the large ¢ limit is discussed further in [2]. It should be noted
that this quantity depends only on the denominator g. The fluctuations described
by these parameters are analogous to the spin-wave excitations in magnetic systems
and are therefore responsible for the absence of long-range order of the phases at
any finite temperature [5] and hence the removal of the mean field phase transition.
The actual transition in this system, as in the ordinary XY-model, is mediated by
the topological excitations (vortices and domain walls) which are not accessible to
the simple spin-wave theory. However, the result of this paper shows that fluctuations
perpendicular to the staircase directions are stronger for higher ¢. This is in agreement
with numerical simulations [1] which show that the critical temperature is depressed
by increasing ¢ although the mechanism for this depression probably has more to do
with the decrease in energy cost for the formation of topological excitations.
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Appendix 1. Derivative formul=e

The eigenvalue equation (3.7} is
S(A(z,y), z) = 22’y
differentiating with respect to z gives

0A(z, y) (asm, .1:)) . (38(/\,:&)
A=A(zy)

dz AA

hence

OA(z,y)  2¢62z"ly— S (A7)
oy - S.ha

Similarly differentiating (A1.1) with respect to y gives

A (2, y) (85(A,z)>
= 2629
ay A A=A{z,y)

which, on rearrangement, yields

dA(z, y) 22t

69 B SA(A):E)‘

Appendix 2. Proof of the expression for ty

We wish to prove that

k
1

;= (HA:) {Irk-i-l,j + Ak+1[k,j+1w}
i=j *

where
k
1
i =2 %
i=j ¢
A+ A, —A;
rk'jz[ kAk ’ 01]
and

w=[1 1)

Clearly t; ; = T;(0;1,1) = r;,, ; and it is easy to verify that

1 Aigo
G = A A I’i+2,i+ A 1“’ .
i i+

—_— = 26z 1y
Oz )A:A(::,y)

(Al.1)

(A1.2)

(A1.3)

(Al.4)

(A1.5)

(A2.1)

(A2.2a)

(A2.2b)

(A2.2¢)

(A2.3)
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If we assume that expression (A2.1) is correct for t,, ; then using the relationsr;

t,7 Jk’—
A, r,k-i-AAkw W= Apw and wr _Awgwes

by = T (01, l)t,w-

k
1
= Tet2k+1 (H A:’) {Zrk-i-l,j +Ae lk,j+1“"}
J

f=j

k
i
= (Hﬁs) {I [Arsatares + Apad;w] + Ak+1’k.j+1Ak+2W}
i i

41
(H A ) { T k2t Appalis ;+1W} (A24)

which corresponds to (A2.1) for t;,, .. Hence, by induction, since the expression is
true for t;,, ; then it is true for all t, ;.
As a check we can use the formula to evaluate S(0,1)

5(0,1) = Tr(t, ;)

which agrees with equation (3.7).

Appendix 3. Trace formul=
The following are trace formulee used in the derivation of results (5.1.5) and (5.2.3):
Trley sp80 0] = AiAis + AiA + AjAgy
Trlwer; ] = A
Trfr, ;,,8w] = A
Tr{wgw] =
Trlgr, ) = AL+ A,
Trr, .8] = 4; + A,
Trjgw] =1
Trlwg] = 1 (A3.1)
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Trle, ;o abyri 1] = —AHA + A~ -4?+1(A1 + A;)

Tr[whyr; )] = —A;(A; + 4;4,)

Trlry spbw] = —A; 5 (A + Ay

Tr(whw] =0

Tefhyr, ] = —(A] + 43)

Trlr, by ] = —(A} + 4))

Telh,w] = —(A; + 4,)

Tr(why] = —(4; + 4,). (A3.2)
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