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Abstract .  
model is calculated by analysing the spectrum of the Hessian matrix for the flux- 
density wave state near the centre of the Brillouin zone for the lowest band. The 
eigenprobiem ior the iiessian i s  iormuiaied in i erm oi transia matrices. Expressions 
for the derivatives of the lowest band with respect to the waveve~tor  a r e  found in 
t e r m  of matrix traces which are then evaluated. 

The zero-temperature helidty modulus tensor of the frustrated XI‘-* 

1. Introduction 

The frustrated XY-model [l] is used to describe the statistical mechanics of Josephson 
junction arrays and granular superconductors. In the absence of disorder the model 
consists of a regular square lattice of superconducting grains embedded in a normal 
matrix. Each grain has an associated angular variable, B ; ,  which is the phase of the 
superconducting order parameter or gap function. The intergrain coupling between 
phases is described by the effective free energy 

H = - J (T )   COS(^;,?) 
(W 

where 4.  . = 6, - 6, - Ai, , ,  the twist factors are given by 
: ,J 

A(T) is the vector potential of an applied magnetic field and Qo is the appropriate 
flux quantum, The sum of the twists around a plaquette, a, is given by 

C Ai,j  = 2 ~ . f ,  
( i , j J E B o  

where f, is the flux threading the plaquette in units of the flux quantum. In the 
foollowing we will assume that the flux is the same on each plaquette of the lattice. 
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Halsey [3] has  proposed a state which i s  a minimum of the effective Hamiltonian 
(1.1) as the ground state of the model for f < f < f .  The form of this state is a 
flux-density wave. In a companion paper to this [2] the fluctuation modes around this 
ground state are discussed. Here I will calculate the helicity modulus tensor which 
describes the susceptibility of the state to  very long wavelength twist deformations of 
the phase ordering. This quantity is related to the experimentally accessible complex 
impedance Z ( w )  of the network in coupled inductor experiments [4]. The kinetic 
inductance is given by 

j . 

This is related to the helicity modulus by 

.where r-’ is the matrix inverse of the helicity modulus tensor. 

Hessian or  stability matrix 
Fluctuations around the ground state are described by the normal modes of the 

If f = p f q  t,hen this matrix is periodic and Bloch’s theorem can be used to  reduce it 
to a q x q matrix, the eigenvectors of the full matrix being 

where C is the eigenvector of the reduced Hessian satisfying Cat, = C, and (kll, k l )  
takes values in the anisotropic Brillouin zone - r /2  5 kll 5 ~ / 2 ,  -7r/29 5 k, 5 ~ f 2 q .  

The reduced eigenvalue equation has the form 

(Ai + Ai+1)C, - zz*AiC;-, - Z Z A ; + ~ C ~ + ,  = iAC, (1.5) 

where z‘ = cos(kll), z = eiaL and the Ais are a set of q characteristic energies for the 
ground state (see [2] for details). The values of the Ais only depend on q, different 
values of p permute the subscripts i. 

2. Transfer  matrix formulation of  the eigenvalue problem 

The eigenvalue equation (1.5) can be rewritten in matrix form ai follows 

Let 
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and define 
a 

Q ( A ; x , z ) =  n T i ( A ; z , z )  
i = 1  

(2.3) 

where the product sign implies ordering the lowest indexed matrix to the right. Clearly 

where 
therefore satisfy 

= n;=,Ai.  The  matrix U = Q/((zz)q must have a unit eigenvalue and 

1 - Tr U + Det U = 0. (2.5) 

Now Tr U = T ~ Q / ( ( Z Z ) ~ ,  Det U = Det Q/(z(zz)" and 

a 
Det Q = Det Ti 

i=1  

= x2qn~i~iti  

i s 1  

= x  29 ( 2 

so the eigenvalue condition (2.5) can be rewritten as 

S(A;z,y) = T r Q ( A ; ~ , z ) = 2 ~ x a y  (2.7) 

where y = $(zq + ( z ' ) ~ )  = cos(qk,). Equation (2.7) will be used as the fundamental 
condition that A be an  eigenvalue of the reduced Hessian. In the next section it will 
be shown tha t  S(A; z, y)  is independent of the variable y. 

3. Proof that S(A) is independent of y 

The transfer matrix T can be decomposed as follows 

T i ( A ; z , z )  = Xi(A)g+zhi(z) ( 3 . 1 )  

where 

and X,(A) = Ai +Ai+,  - :A. 
It  will be convenient to introduce the following notation. Consider a word coii- 

sisting of an ordered string of q characters chosen from {g, h ] .  Each word represents 
the trace of the product of t,he corresponding terms in the decomposition (3.1). For 
example for q = 2 there would be the four words 

[ssl = X,X,T@) [ghl = 4 T r ( g h l )  

[hg] = xXITr(h,g) [hh] = z?Tr(h,h,). (3.3) 
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Clearly S(A; x,y) is given by the sum of all possible words. 
Since hi is purely off-diagonal and g is diagonal it follows that any product of an 

odd number of hs will be off-diagonal and therefore traceless, consequently any word 
with an odd number of hs will no t  contribute to S. This immediately implies that  
S(A;z,y) is an  even function of z. 

Consider now a word in which the substring ghg appears. This corresponds to 

hence any word with isolated hs does not contribute either. 
Now we consider partitioning a given word, which does not vanish for either of the 

above reasons, such tha t  each partition contains an even number of hs, no partition 
can itself be decomposed into allowed partitions and no division falls between two 
gs. For example [ggihhlgggihhlhghlhhlhggggh~hhlhh] is correctly partitioned. This 
partitioning is unique. If we consider the matrix product consisting of the subword 
within one partition there are three possible cases. If the subword contains no  hs 
then the matrix product is obviously independent of z .  If the subword is hh then the 
product is 

(3.5) 

which is independent of z .  Finally if the subword is a string of gs with an  h at either 
end then, using the idempotence of g and ignoring the X factors, we get 

which is independent, of z .  
Hence we conclude tha t  S ( h ,  x, y) depends only on A and on x2 ,  not on 2 ,  y or any 

other function of k,. Since Q is independent of z we can choose to construct it from 
T matrices evaluated at any convenient value of z ,  subject to the constraint IzI = 1; 
the most sensible choice is z = 1 so tha t  the eigenvalue condition can now be written 
as 

S(A,  x) = 2Ez'y (3.7) 

where S ( A ,  x) = TI n:=, Ti(A, z, 1). 

4. L o c a l  analysis near the z o n e  c e n t r e  

Close to the centre of the Brillouin zone we can approximate the lowest band by 

where 
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From the invariance of ?,he Hamiltonian under global phase rotation'and the fact that  
the state is a minimum of the Hamiltonian (and that the Hessian is therefore non- 
negative) we know tha t  w ( " ) ( O )  = 0. The  first-order terms vanish at the zone centre 
by reason of symmetry (only even functions of k appear in the eigenvalue equations). 
The  second-order terms can be written in the form 

By tz ng 

where 

rivatives of equation (3.7) it  can be shown (appen, : 1) tha t  

(4.3) 

(4.4) 

The  modes corresponding to the lowest band near the zone centre are long-wavelength 
uniform rotations of the phase angles 8; hence the coefficients characterize the 
energy cost of externally applying such phase rotations to the system. These are 
usually referred to as the helicity moduli of the system (at  finite temperature it is the 
free energy cost which enters the definition) [4]. 

5. Calculation of the derivatives of S 

In this section we will evaluate the two derivatives SA(O, 1) and S,.(O, 1). 

5.1. Calculation of SA(O, 1) 

Differentiatiou of (3.7) with respect to A gives 

where 

and 
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It can be shown (appendix 2) that  

(5.4) 

where l , , j ,  rk,, and w are defined in (A2.2). Evaluation of (5.1.1) using the trace 
formulre (A3.1) yields 

which is a function of q only since it is a sum over all subscripts 

5.2. Calczllation ofS,(O, 1) 

Differentiation of (3 .7)  with respect to x gives 

P - 1  

SAO, 1) = n t , , 2 h 1  +Tr x t , , i + l h i f i - l , l  + n h , t , - , , ,  
i=2 

where 

Again employing the result of appendix 2 gives, with the use of (A3.2),  

SAO, 1) = 2c ( q  - L + ( q ) L - ( d )  

L + ( d  = x Ai 

where 

0 

i=i  

6. The helicity moduli 

Using the results of the previous section gives the following for the two non-zero 
components of the helicity modulus tensor 

L ,  have the form 

1 + 2 cos(i/r/q) q odd 
cos(i/s/q + r/2q) q even L+ = { 2 

(6.2a) 



The zero-temperature helicity moduli 

and 

For all q ,  L ,  has the  form 

hence 

8Jsin(?r/2q) 
r l l , l l  = q ( l  - cos(*/q)) 

In the asymptotic limit, q -+ 00, we can write 

yielding for the helicity moduli 

695 

(6 .26 )  

7. Discuss ion  

T h e  non-vanishing components of the  helicity modulus tensor have been calculated 
for the frustrated XY-model i n  the 'flux-density wave' states which are believed to be 
the ground states for some rational values of the flux parameter f = p/q in the range 
4 < f < $. Explicit expressions have been given in terms of sums of the bond energies 
which characterize the  state.  In addition asymptotic forms, valid for large q have been 
given. T h e  relevance of the large g limit is discussed further in [Z]. I t  should be noted 
tha t  this quantity depends only on the denominator q .  The  fluctuations described 
by these parameters are analogous to the spin-wave excitations in magnetic systems 
and  are therefore responsible for the  absence of long-range order of the phases at 
any finite temperature [5] and hence the removal of the mean field phase transition. 
T h e  actual transition in this system, as in the ordinary XY-model, is mediated by 
the  topological excitations (vortices and domain walls) which are not accessible to 
the  simple spin-wave theory. However, the result of this paper shows that fluctuations 
perpendicular to the staircase directions are st,ronger for higher 9 .  This is in agreement 
with numerical simulations [l] wliiclr sliow that the critical temperature is depressed 
by increasing q although the niechanisni for this depression probably has more to do 
with t.he decrease in energy cost for the  formation of topological excitations. 
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Appendix 1. Derivative formulae 

The eigenvalue equation (3.7) is 

S(A(x ,y) ,+)  = 2Ex9y 

differentiating with respect to z gives 

hence 

Similarly differentiating ( A l . l )  wit11 respect to y gives 

which, on rearrangement, yields 

aA(x ,y)  2cxq -- - 
ay  ~A(A,x)' 

Appendix 2. Proof of the expression for tk,j 

We wish to prove that 

where 

and 

w =  [: I:] 
Clearly t i , i  = Ti(O; 1 ,  1)  = ritl,i and it is easy to verify that 

1 Ai+? 
*cl  ' [ A i  Ai+1 

t i t l , i  = A -  A .  - r i + z , i  + - 

( A l . l )  

(A1.2) 

(A1.3) 

(A1.4) 

(A1.5) 

(A2.1) 

(A2.2a) 

(A2.2b) 

( A 2 . 2 ~ )  

(A2.3) 
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If we assume that expression (A2.1) is correct for tk,j then using the relations r i , j r j , k  = 
Ajri,k + AiA,w, r k j w  = A,w and wrk,j = A,w gives 

tk+l,j = T,+,(O; 1 3  l)t,,j 

(A2.4) 

which corresponds to (A2.1) for thtl , j .  Hence, by induction, since the expression is 
true for titl,i then it is true for all 

As a check we can use the formula to evaluate S(0,l) 

S(03 1) = W Y , 1 )  

= ~- '( 

which agrees with equation (3.7). 

Appendix 3. Trace formulae 

The following are trace formulae used in the derivation of results (5.1.5) and (5.2.3): 

w ~ l , i t l g ~ i , l l  = A d i t 1  + A A  + A I L  

w , , i t , g w 1  = A i t l  

l y w g w ]  = 0 

Trk ry , l l  = A1 + A, 

W,,,gl = A1 + A2 

n [ g w ]  = 1 

Tr[wgri,,] = Ai 

TI[wg] = 1 (A3.1) 
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